ГлавнаяСтатьи

Влияние пуццолановых добавок на свойства бетона

Каждый результат представляет собой среднюю из испытаний 10—20 образцов портландцемента или пуццоланового портландцемента, твердевших в различных условиях (во влажной камере и в ванне с гидравлическим затвором). Для изготовления цементов были применены все виды- пуццолановых добавок: пемза, диатомито-вые сланцы и земли, вулканический пепел, сырые и обожженные глины.

Хотя прочность на сжатие у бетонов из пуццоланового портландцемента оказалась несколько ниже, чем у соответствующих чистых портландцементных бетонов, абсолютные показатели прочности у тех и других можно считать вполне удовлетворительными.

Пемза считается одной из добавок, понижающих прочность цемента и бетона. Правда, ее качество можно улучшить с помощью обжига и тонкого помола. Но такая обработка повышает стоимость добавки, и (поэтому гораздо выгоднее применять ее в натуральном виде, если при этом можно получить бетон удовлетворительной прочности. Образцы готовились из цемента и пемзы, взятых в различных соотношениях. Пемза из района Фресно, Калифорния, применялась в натуральном виде.

Величина модуля Юнга колебалась от 280 000 до 308 000 кг/см2 к 28 суткам и от 370 000 до 390 000 кг/см2 к 5 годам. Соответствующие величины для коэффициента Пуассона составляли от 0,17 до 0,18 к 28 суткам и от 0,21 до 0,22” к 5 годам.

Одной из лучших добавок с точки зрения роста прочности цемента и бетона является летучая зола.

Рис. 1. Пуццолановый портландцемент выделяет меньше тепла, чем протландцементы I и II, и с меньшей скоростью, что дает лучшие результаты для бетона, чем искусственное охлаждение: а — теплота гидратации; б—повышение температуры; 1—портландцемент I; 2— портландцемент II; 3 — пуццолановый портландцемент II с 25% добавки; 4— портландцемент IV

Данные не отличались сколько-нибудь заметными колебаниями для каждого срока твердения; по мере увеличения срока твердения и роста прочности соответственно увеличивались и показатели модуля Юнга и коэффициента Пуассона..

По величине тепловыделения и повышению температуры бетон из портландцемента типа II с добавкой летучей золы практически не отличается от бетона из портландцемента типа IV (низкотер-мичного) без всяких добавок (рис. 1). Это означает, что термическая усадка такого бетона после охлаждения его до средней постоянной температуры должна быть меньше, — весьма важное свойство для массивных сооружений. Опыты, представленные на рис. 1, проводились в камерах с адиабатически регулируемой температурой хранения; расход цемента при изготовлении образцов массивного бетона составлял около 220 кг/м3.

Усадка при высыхании у бетона из пуццол а нового портланд-цемента с высококачественными пуццоланами не намного выше, чем у такого же бетона из чистого портландцемента. В качестве пуццолановой добавки в этих опытах применялся обожженный опаловидный сланец. При введении до 25% он даже несколько снизил усадку.

Аналогичные данные по усадке получены и для бетона, изготовленного из пуццоланового портландцемента с добавкой летучей золы. Эти данные представляют собой средние результаты из пяти серий испытаний, причем летучая зола была взята из двух различных источников. В качестве природных заполнителей использовались различные материалы. И в этом случае добавка летучей золы во всех дозировках снизила усадку бетона при высыхании.

Рис. 2. Трещииоустойчивость бетона увеличивается при применении пуццоланового портландцемента: I — температурный цикл; II — напряжения; III — разрушение образца; 1 — портландцемент I; 2— портландцемент И; 3 — пуццолановый портландцемет II с 30% пемзы; 4 — портландцемент IV

Применение пуццолановых цементов улучшает способность бетона к расширению, т. е. его трещиноустойчивость, как видно из рис. 2. Образцы диаметром 15 см и длиной 60 см, изготовленные из различных видов цементов (обыкновенного, умеренно термичного, низкотермичнош и пуццоланового) с одними и теми же заполнителями, помещались в герметически закрытые оболочки из мягкой меди с укрепленными на них в продольном направлении приборами для измерения деформации. Образцы подвергались воздействию переменных циклов повышения и понижения температуры в соответствии с величинами теплоты гидратации каждого цемента. Как только образцы обнаруживали тенденцию к расширению, их специальными пружинными зажимами устанавливали на постоянную длину. Затем, после охлаждения и снятия сжимающих напряжений, образцы переносили в пружинную натяжную рамку, устанавливали на постоянную длину и подвергали действию растягивающих усилий. Образцы из обыкновенного и умеренно термичного цемента разрушались, не достигнув первоначальной исходной температуры. Образцы из низкотермичного и пуццоланового цемента выдерживались при начальной температуре в течение известного времени, а затем медленно охлаждались, причем исходная длина их оставалась неизменной. Как видно из графика на нижней части рис. 31, они до разрушения выдержали напряжение от 21 до 19 кг/см2, причем пуццолановый цемент показал гораздо большую степень пластической деформации при постоянной температуре. Этот опыт объясняет причину появления легких трещин в сооружениях, изготовленных из низкотермичных и пуццолановых цементов, а также повышенной способности бетона из пуццоланового цемента к сопротивлению высоким напряжениям, которые возникают при пластической деформации.

Рис. 3. Многие пуццолановые добавки уменьшают расширение раствора и бетона, вызываемое реакцией щелочи — заполнители: 1 — портландцемент без добавок; 2 — портландцемент с добавкой 20% чистого кварца; 3 — с добавкой 20% необожженного сланца; 4 — с добавкой 20% пемзы: 5 — с добавкой 20% летучей золы; 6 — с добавкой 20% обожженного сланца; 7— с добавкой 20% необработанного опала: 8 — с добавкой 20% обожженного опаловидного сланца

Как было установлено, многие пуццолановые добавки весьма эффективно снижают избыточное расширение бетона, связанное с реакцией между щелочами и заполнителями. Это действие пуццолан иллюстрируется графиком на рис. 32. Дл? опытов были изготовлены растворные образцы-балочки 2,5 X 2,5 X 25 см, состава 1 : 2,25, из высокощелочного цемента и молотого стекла пайрекс в качестве реакционноспособного заполнителя. Дозировка пуццолановой добавки составляла всего 20% по весу. Тем не менее в ряде опытов удалось значительно уменьшить расширение образцов, несмотря на высокую активность заполнителей. В случае менее peaкционносПособных заполнителей пуццолановая добавка была бы еще более эффективной.

Рис. 4. Добавка к портландцементу обожженного опаловидного сланца в разумных пределах повышает морозостойкость бетона: а — бетон без специальных добавок; б — бетон с воздухововлекающей добавкой

Механизм тормозящего действия пуццолановых добавок на реакцию между щелочами и заполнителями еще не выяснен. Можно предположить, что кремнезем пуццолановой добавки, находящийся в тонкодисперсном состоянии, быстрее вступает в реакцию со щелочами портландцемента; вследствие этого большая часть вредных реакций проходит еще до того, как бетон успевает затвердеть, и тем самым снижается или вовсе устраняется избыточное расширение бетона.

Рис. 5. Стойкость порт-ландцементов и пуццолано-вых портландцементов в 10-процентном растворе сернокислого натрия; заштрихованные участки — отсутствие разрушения; —х) в течение 14 мес. не наблюдалось ясно выраженного разрушения. 1—75% портландцемента II, 25% глинистого сланца; 2 — 75% портландцемента II: 25% пемзы; 3 — 70% портландцемента, 30% ила; 4 — 70% портландцемента IV, 25% пуццоланы; 5 — 50% портландцемента II, 50% пуццоланы; 6 — 65% портландцемента II, 35% пуццоланы; 7 — 75% портландцемента, 25% пуццоланы; 5 — 85% портландцемента II, 15% пуццоланы; 9 — 65% портландцемента I, 35% пуццоланы; 10 — 75% портландцемента I, 25% пуццоланы; 11 — сульфатостойкий портландцемент V; 12 — портландцемент IV; 13 — быстротвердеющий портландцемент III; 14 — портландцемент II; 15 — портландцемент I

Сопротивление бетона замораживанию и оттаиванию (морозостойкость) несколько ниже при применении пуццоланового портландцемента по сравнению с чистым портландцементом. Однако при введении высококачественных пуццолан в разумных дозировках снижение долговечности бетона незначительно. В некоторых случаях удовлетворительная долговечность может быть получена при введении воздухововлекающих добавок.

Повышенная сульфатостойкость пуццоланового портландцемента была установлена многими исследователями. Некоторые данные по этому вопросу приводятся на рис. 5. На графиках этого рисунка показано, сколько времени могут выдержать до разрушения образцы из чистого цемента при хранении в 10-процентном растворе сульфата натрия.

На рис. 6 представлены данные о влиянии добавок летучей золы и обожженного опаловидного сланца на водопроницаемость тощих бетонов. В двух левых прямоугольниках приведены абсолютные объемы цемента и пуццолановых добавок в куб. футах на куб. ярд бетона. В бетонах из пуццолановых цементов объем добавки заштрихован косыми линиями. В двух правых прямоугольниках показаны коэффициенты проницаемости, выраженные в виде количества воды ( в куб. футах в год), протекающего через площадь в 1 кв. фут, с гидравлическим уклоном, равным 1. В верхнем прямоугольнике даны средние величины к, определенные на бетонных образцах-цилиндрах 45 X 45 см с предельной крупностью заполнителей 15 мм (из трех месторождений). В нижнем прямоугольнике даны средние величины к, определенные на образцах-цилиндрах 15 X 15 см с предельной крупностью заполнителей 3,75 мм (из одного месторождения).

Рис. 6. Водопроницаемость бетона с добавкой летучей золы и обожженного опаловидного сланца; I — образцы-цилиндры 45 X X 45 см, предельная крупность заполнителя 15 см; II— образцы-цилиндры 15X15 см, предельная крупность заполнителя 3,75 см. Удельная поверхность в см2/г (по Блейну): цемента — 3590, летучей золы — 3746, опаловидного сланца — 13500. 1 — 100% портландцемента II: 2— портландцемент II с добавкой 33% летучей золы; 3—с добавкой 35% летучей золы; 4 — с добавкой 38% летучей золы; 5 — бетон с добавкой 35% летучей золы при затворении; 6—портландцемент II с добавкой 35% сланца; 7 — бетон с добавкой 35% сланца при затворении

Три верхних отрезка в верхнем правом прямоугольнике отражают постоянное увеличение коэффициента проницаемости при уменьшении расхода цемента. Эти отрезки представляют соответственно расход цемента в 4, 3 и 2 мешка цемента на 1 куб. ярд бетона (230, 172 и 114 кг/м3 бетона). Четвертый сверху отрезок представляет бетон с расходом цемента 3 мешка и пуццоланы 1 мешок на 1 куб. ярд (230 кг пуццоланового цемента на 1 м3 бетона). Но так как пуццолановая добавка вводилась по весу, то она фактически замещала не равный вес, а больший объем цемента. Поэтому отрезок показан несколько более длинным, чем соответствующий отрезок для чистого цемента без добавки. Два нижних отрезка в верхнем прямоугольнике представляют смесь с расходом цемента 3 мешка на 1 куб. ярд (172 кг/м3 бетона).

В нижнем прямоугольнике представлены смеси, полученные на основе замещения цемента по объему. Пуццолановые добавки введены из расчета объема цемента и представляют собой часть объема цемента в контрольной смеси. Количество добавки рассчитано таким же образом, но фактически она замещает объем песка и гравия при проектировании смеси.



Читать далее:
Обработка шлака и легких заполнителей
Однородность заполнителей для бетона
Установка для обработки породы
Разработка месторождений заполнителей
Испытание отобранных проб заполнителей
Отбор проб
Разведка заполнителей
Поисковые работы
Легкие заполнители
Реакция между щелочами и заполнителями в бетоне



Ваш отзыв