ГлавнаяСтатьи

Схватывание и твердение портландцемента

Вяжущие свойства портландцемента обусловлены особенностями химических соединений, входящих в состав клинкера. По химическому составу клинкер представлен следующими соединениями.

При обжиге до спекания эти вещества, соединяясь в различных соотношениях, образуют силикаты и алюминаты кальция, которые входят в состав клинкера в виде минералов кристаллической структуры. Некоторая их часть находится в стекловидном состоянии.

Основные минералы клинкера — алит и белит (силикаты кальция), а также трехкальциевый алюминат и алюмоферрит кальция (алюминаты кальция).

Алит— основной минерал клинкера. Его химическая формула 3Ca0-Si02, сокращенно C3S*. Алита в клинкере содержится 45…60%, т. е. больше, чем любого другого минерала. Алит отличается быстрым твердением и большой прочностью.

Названия искусственных минералов клинкера — алит и белит — образованы от греческого слова «литое» (камень) с прибавлением начальных букв латинского алфавита А и В. Суммарное содержание этих минералов — силикатов кальция — составляет в клинкере портландцемента около 75%. Поэтому его называют иногда силикатным цементом в отличие от алюминатных цементов, например глиноземистого, в клинкерной части которых преобладают не силикаты, а алюминаты кальция.

По этим характеристикам можно составить представление о том, как влияет количественное соотношение между минералами в клинкере на свойства цемента. Так, для получения быстротвердеющего цемента надо увелйчить содержание в клинкере наиболее быстротвердеющих соединений, т. е. C3S и С3А. Такой цемент одновременно обладает и большим тепловыделением. Свойство быстрого твердения используют при производстве сборного железобетона на заводах, где важно сократить длительность технологического цикла. Бетон, изготовленный на цементе с высоким содержанием C3S и С3А, можно применять для работ в зимнее время: из-за большого тепловыделения цемента конструкция медленно остывает даже на морозе и бетон набирает достаточно высокую прочность.

При бетонировании массивных конструкций важно предотвратить излишний саморазогрев бетона, который может вызвать его растрескивание. В этом случае применяют цемент с низким тепловыделением, т. е. относительно малым содержанием C3S и С3А.

Для получения морозостойких бетонов ограничивают в клинкере содержание С3А. Кроме того, нормируют минеральный состав клинкера, чтобы повысить стойкость цементов против химической коррозии.

Помимо указанных основных соединений в клинкере присутствуют свободный кристаллический оксид магния MgO (минерал периклаз), а также оксиды калия и натрия. Высокое содержание периклаза (более 5%), особенно в виде крупных кристаллов, представляет большую опасность. При взаимодействии с водой MgO увеличивается в объеме. Если эта реакция происходит в затвердевшем цементном камне, то возникают большие внутренние напряжения, что приводит к растрескиванию бетона.

Минералы цементного клинкера способны энергично взаимодействовать с водой, образуя гидратные соединения. Клинкерные минералы растворяются в воде в большей или меньшей степени, а продукты гидратации цемента (так называемые новообразования или кристаллогидраты) в воде практически нерастворимы. В противном случае отвердевшие цемент или бетон не были бы водостойкими.

Процесс твердения цемента в соответствии с теорией твердения вяжущих, разработанной академиком А. А. Байковым, условно разделяется на три периода: подготовительный, коллоидации и кристаллизации.

В подготовительном периоде частицы цемента смачиваются водой и растворяются с поверхности; со временем образуется насыщенный раствор. В этот период, длящийся 1…3ч, цементное тесто пластично и легко поддается формованию.

В период коллоидации концентрация гид-ратных новообразований в растворе возрастает. Новообразования обладают гораздо меньшей растворимостью в воде, чем исходные безводные соединения. Поэтому раствор, насыщенный по отношению к исходным соединениям, является пересыщенным по отношению к новообразованиям. Гидратные новообразования в виде мельчайших коллоидных частичек — субмикрокристаллов — выделяются из раствора, образуя цементный гель.

Возникновение большого количества геля приводит к загустеванию цементного теста, которое утрачивает пластичность. Момент загустевания (схватывания) цементного теста наступает через 3…5 ч после затворения цемента водой. Прочность загустевшего теста в этот период еще невелика.

Период кристаллизации характеризуется дальнейшей гидратацией цемента. Образующийся гель постепенно преобразуется в кристаллические сростки. Число и поверхность контактов в кристаллах новообразований увеличивается, что приводит к заметному росту прочности цементного камня. Твердение цемента и материалов на его основе—бетона, строительного раствора при благоприятных условиях может продолжаться несколько лет.

Новообразования, формирующие кристаллический сросток в цементном камне, возникают в результате химических реакций гидролиза и гидратации минералов цементного клинкера. Гидролиз характеризуется расщеплением минералов, а при гидратации идет лишь присоединение воды к исходному минералу.

Алит C3S и белит C2S при взаимодействии с водой подвергаются гидролизу. В результате реакций возникает соединение 3Ca0-2Si02-3H20, в состав которого входит химически связанная вода. Важно отметить, что это соединение (гидросиликат кальция), как и другие продукты гидратации цемента, представляют собой твердые вещества. Их называют кристаллогидратами.

Кроме гидросиликатов кальция при гидролизе элита и белита образуется значительное количество гид-роксида кальция Са(ОН)г. Это обстоятельство имеет большое значение для формирования многих свойств затвердевшего цемента, о чем будет сказано ниже.

Чтобы замедлить схватывание цемента, вводят в его состав гипсовый камень CaS04-2H20, который связывает алюминат кальция. Так продолжается до тех пор, пока не будет израсходован весь гипс.

Таким образом, в результате взаимодействия цемента с водой получаются новые соединения, в состав которых входит химически связанная вода: гидросиликаты, гидроалюминаты и гидроферриты кальция, а также гидроксид кальция. Они и обусловливают формирование прочной структуры твердеющего цемента.

Ниже приведены наиболее важные выводы из рассмотренного процесса твердения портландцемента.

Все химические реакции взаимодействия клинкерных минералов с водой — экзотермические, т.е. сопровождаются выделением теплоты. Экзотермия цемента может рассматриваться и как положительное явление (например, при зимнем бетонировании), и как отрицательное (при бетонировании массивных конструкций или производстве работ в жаркую сухую погоду).

Один из продуктов взаимодействия силикатных минералов (алита и белита) с водой — гидроксид кальция. Это значит, что в результате твердения в цементном камне всегда возникает щелочная среда.

Данное явление также имеет свои плюсы и минусы. В щелочной среде, как известно, не происходит коррозии железа. Поэтому бетоны на портландцементе (и его разновидностях) хорошо защищают стальную арматуру от коррозии. Это одно из основных условий долговечности железобетона.

С другой стороны, Са(ОН)2 сравнительно легко подвергается коррозии в агрессивных средах и даже может вымываться водой. Поэтому для повышения стойкости бетона к коррозии приходится вводить в цемент особые добавки, связывающие Са(ОН)2 в более стойкие- соединения. Таким путем получают, например, пуццолановый портландцемент.

Затворение цементного порошка водой — это необходимое условие образования прочного цементного камня, но избыточное количество воды не увеличивает, а уменьшает его прочность. Это вызвано тем, что цемент способен химически связывать не любое, а строго ограниченное количество воды — максимум 25…30% (считая от массы сухого цемента). Химически связанная вода входит в состав твердой фазы — новообразований цементного камня. Эти новообразования и формируют (синтезируют) прочность цемента.

Вся остальная вода, содержащаяся в цементном тесте или камне, остается в жидком состоянии. Впоследствии, при высыхании бетона, вода испаряется, в результате чего в структуре цементного камня образуется система тончайших пор. Чем больше введено при затворении воды, тем большей окажется пористость и, следовательно, ниже прочность и стойкость цементного камня и бетона.



Читать далее:
Глиноземистый и расширяющиеся цементы
Цементы с минеральными добавками
Специальные виды портландцемента
Свойства портландцемента
Производство портландцемента
Неорганические вяжущие вещества
Разные материалы для штукатурных работ
Заполнители для штукатурных работ
Вяжущие материалы для штукатурных работ
Расширяющиеся цементы



Ваш отзыв